
What does it mean?	

Why Program?
●  Applications come from the

needs of the present: your
needs

●  ﻿Effectively articulating needs
is the first step

●  Express complex logic and
perform computation

●  Do things that would take a
human a long time to do

o  counting
o  comparing
o  repeating

Digital Humanities Programming?

What is a programming
language?

An artificial language with
a limited purpose

A means of expressing
computations (math) and
algorithms (logic)

What is a programming
language?

...like human languages in some ways!

● Syntax (form)
● Semantics (meaning)
o signs/words (variables, symbols,

numbers, strings)
o expressions
o "flow" (decisions, conditions, loops,

narrative)
o complex entities (methods, structures, &

objects)

 "when you don't create
things, you become defined
by your tastes rather than
ability. your tastes only
narrow & exclude people. so
create.”
 why the lucky stiff (@_why)

Software Terminology
●  Operating System talks to computer

hardware
●  Application sends input to the operating

system and receives output

Language
●  Code used to create applications

o  Ruby
o  PHP
o  Python
o  JavaScript
o  Java
o  C++
o  C
o  many, many more...

Language Choice
●  Is it “easy” to maintain?
●  Is the standard library good enough?
●  Can developers learn it?
●  Can you live with the syntax?

Library
A collection of reusable code to accomplish a
generic activity

●  Date math (three months from today)
●  Logging
●  Working with file systems
●  Compressing files

Framework
●  Collection of reusable code to facilitate

development of a particular product or
solution
o  Twitter Bootstrap
o  Rails
o  Susy
o  jQuery

Ruby vs. Rails
● Ruby is a language
● Gems are Ruby libraries
● Rails is a framework

o  Written in Ruby
o  Contains many Ruby gems
o  Used to build web applications

Ruby Philosophy
“Principal of least surprise”

o  People want to express themselves
when they program

o  People don’t want to fight the
language

o  Programming languages must feel
natural

"...trying to make Ruby
natural, not simple."	

 	

Yukihiro Matsumoto 	

aka "Matz"	

Ruby Philosophy: @matz
“I tried to make people enjoy
programming and concentrate on the fun
and creative part of programming when
they use Ruby”

Ruby Philosophy: applied
●  Ruby is a humane interface (many ways to do

things)
●  Favors readability and variety over concision

and perfection
●  Sometimes this makes code harder to

understand, but usually it’s easier
●  Contrasts with a minimal interface with one

(or very few) “correct” ways to do things

Many Rubies
Ruby 1.0 (1996)

Implementations
●  MRI
●  REE
●  Jruby
●  Rubinius
●  MagLev
●  MacRuby

Many Versions
●  MRI 1.9.3
●  MRI 2.1.2
●  Jruby 1.7.13
●  …

Myth
● Scripting languages don't scale
o Facebook (PHP)
o Twitter (Ruby)
o Google (Python)
o Slashdot (Perl)

Dogma
● Language x is not web-scale
● Language x is not enterprise
● Language x does not scale
● The x framework doesn't handle

this weird edge case

Why Ruby?
● General purpose
● Usable on your computer or over the web
● English-like syntax and useful built-in

features
● Doesn't require a compiler
● "Fun" to write
● Object-oriented

Why Not Ruby?
● Not as easy to run on the web as PHP
● Used less often than PHP, and major

platforms (WordPress, Drupal, Omeka) use
PHP
● Ruby isn't Rails
● Object-oriented languages are conceptually

difficult to grasp

What we will cover
What is a data type?

What is a variable?

What is an operator?

What you will be able to do
create numeric and text information

store information in variables

print information to the screen

Open the Terminal
●  Windows: git bash
●  OS X: iTerm2

Prompt
●  Terminals show a line of text after a

command finishes

●  Whenever instructions start with "$ ", type

the rest of the line into the terminal

●  Let's give the terminal a command to open

Interactive Ruby (IRB)

$ irb

irb: Interactive Ruby
IRB has its own prompt with ends with >

$ irb !
> !

You can use Control + D to exit IRB at any
time or type exit on its own line

Variables

"words" that refer to
information

Variables
Give it a name so we can refer to it
It's information can be changed

$ irb !
> my_variable = 5 !
=> 5 !
> my_other_variable = "Hi" !
=> "Hi" !
> my_variable = 10 !
=> 10 !
!

What's with => ?
●  Setting a variable to a value is

called "assignment"

● What types of information can we

hold in a variable?

Variable Assignment
● Variables are assigned using a

single equals sign (=)
●  The right side of the equals sign is

evaluated first, then assigned to
the variable name on the left side
of the equals

Variable Assignment
apples = 5 !
bananas = 10 + 5 !
fruits = 2 + apples + bananas !
bananas = fruits - apples !

Variable Naming
all letters (folders)
all numbers (2000)
with an underscore (first_name)
with a dash (last-name)
a number anywhere (l33t)
a number at the start (101dalmations)
a number at the end (starwars2)

Variable Naming

Be descriptive of the “thing”

Ruby is a "duck-typed" language

Duck-typing
If it looks like a duck and
it quacks like a duck,
chances are it's a duck.

Types of ducks

standard types: 	

numbers & letters

Numbers & Letters
integers:
4, 1040, -55, 9999 !

floating-point numbers:
1.1, 0.444, 9999.0001, -3.33 !

text (strings):
"a", 'cat', "The quick brown fox jumped over the
lazy dogs.", '8 keys', '7' !

boolean (yes or no?):
true, false, 0, 1 !

Strings
Strings are text; it must be wrapped in a matched
pair of quotation marks.

$ irb !
> 'Single quotes work' !
=> "Single quotes work" !
> "Double quotes work" !
=> "Double quotes work" !
> "Start and end have to match' !
"> !

Exercise
Create variables named

first_name, last_name, and

favorite_color !
Assign string values to the variables

Numbers
●  Numbers without a decimal point are

integers
o  0 !
o  -105 !
o  898989898 !
o  2 !
o  -898989898 !

Numbers
Numbers with decimal points are floating
point numbers (floats)

o  0.0 !
o  -105.56 !
o  .33 !
o  .000004 !
o  3.14159265359 !

Numbers
●  You can perform operations on both types

of numbers
o  + !
o  - !
o  / !
o  * !

Exercise
●  Try dividing an integer by an integer
●  Try dividing an integer by a float
●  How are the results different?
●  Create two integer variables named num1

and num2 and assign your favorite numbers
●  Compute the sum, difference, quotient,

and product of these two numbers and
assign these values to variables named
sum, difference, quotient, and product !

An answer
num1 = 4 !
num2 = 5 !
sum = num1 + num2 !
difference = num1 - num2 !
quotient = num1 / num2 !
product = num1 * num2 !

Why does quotient = 0 ?

Collections

Collections
Collection Types: Array, Hash

o  Define an Array

o  Array syntax

o  Array indexing

o  Array methods

o  Definition of a hash

o  Hash syntax

o  Hash indexing

Array
●  An array is a list
●  Each array is surrounded by square
braces (aka square brackets) []!

●  Each element (member) is separated by a
comma

> fruits = ["kiwi", "strawberry", "plum"] !
=> ["kiwi", "strawberry", "plum"] !

Exercise
●  Make your own array named
grocery_list

●  Include at least 5 items in your grocery list
in the array

Array
●  Indexing

o  Members are stored in order
o  Each member can be accessed by its index
o  Ruby starts counting at zero

> fruits[0] !
=> "kiwi" !
> fruits[1] !
=> "strawberry" !
> fruits[2] !
=> "plum" !

Exercise
●  Still have your grocery_list array?
●  What is at index zero in your grocery list

array?
●  How about index 5?
●  Guess the answers and use the syntax

examples to see if your guesses are
correct
o  hint: fruits[0] !

Hash
●  In a hash, we can refer to a member by a

keyword instead of a number
●  Each member is a pair

o  Key: address of the hash member
o  Value: variable contained by the member, and

located by the key name
●  Other names for a hash:

o  dictionary !
o  associative array !
o  map !

Hash Syntax
●  Surrounded by curly braces (aka curly

brackets) {}!
●  Commas separate each member pair
●  A key uses => (the rocket) to point to its

value

> states = {"VA" => "Virginia",
"MD" => "Maryland"} !
=> {"VA" => "Virginia", "MD" =>
"Maryland"} !

Exercise
Define a hash named my_info that contains
the following keys
●  first_name !
●  last_name !
●  hometown !
●  favorite_food !

Hash Indexing
●  Member pairs can be accessed by their

key
o  Each key needs to be unique
o  Values do not need to be unique

states["MD"] !
=> "Maryland" !

Exercise
●  Add the key good_food to your my_info

hash and give it the same value as your
favorite_food key. What happens?

●  Add a second favorite_food key to your
my_info hash. What happens?

Methods
●  Things that do stuff

o  Objects (like strings, integers, and hashes) are
nouns; methods are verbs

o  Called (used) with a "."
§  5.to_s (to_s is the method)

o  5 + 5 is a shortcut way of writing 5.+(5) !
●  Each data type has a set of built in

methods.
o  See String's methods http://www.ruby-doc.org/

core-2.1.2/String.html

Exercise
●  Create a String variable named old_string

and assign it the value "Ruby is cool"
●  Use String methods to modify the

old_string variable to that it is now "LOOC
IS YBUR" and assign it to another variable
named new_string !
o  Hint: look at the String methods "upcase" and

"reverse"

Booleans
A boolean can only have one of two values:
true or false !

> 1 + 1 == 2 !
true !
> 1 + 1 == 0 !
=> false !

(== means "is equal to;" More on that later...)

Exercise
●  Create a variable named favorite_color

and assign it to your favorite color
●  Create a variable named

not_favorite_color and assign it to a
different color

●  Test if these variables are equal
o  Is equal to operator is == !

Sometimes there is a problem...

Casting to appropriate type
● to_s (to string)
● to_i (to integer)
● to_f (guesses?)

Example:

 > "3".to_f !
 => 3.0 !

Operators: do stuff with objects	

> my_variable + 2 !
=> 7 !
 !
> my_variable * 3 !
=> 15 !
 !
> my_other_variable + " there!"!
=> "hi there!" !
 !
> fruits = fruits + ["lychee"]!
=> ["kiwi", "strawberry", "plum", "lychee"]!
 !
> fruits = fruits - ["lychee"]!
=> ["kiwi", "strawberry", "plum"] !

Exercises
●  Create an array named vegetables that

contain three vegetables you like and one
vegetable you don't

●  Using the vegetables array, create an array
named my_vegetables that contains only
the vegetables you like

●  Extra: can you use the first two arrays to
create a new array named your_vegetables
that only contains the vegetables you
don't like?

More Operators
 !
+, -, /, * math operators (+ also means concatenation)

= assign a value

+= addition, then assignment

|| or

&& and

== equal

!= not equal

Printing things to the screen
puts "Doctor Who" !
!
doctors = ['Matt Smith', 'David Tennent'] !
puts doctors[0] !
!
best_episode = 'Blink' !
 !
puts "My favorite episode is " + best_episode !
!
puts "My favorite Doctor is " + doctors[1] !

Code Exercise 1
Store your street address, city, state, and zip code in
variables (or even better, a hash!), then print them in the
usual format:

Wayne Graham !
123 My Street !
Lexington, VA 22450 !

An Answer
address = { !
 'name' => 'Wayne Graham', !
 'street' => '123 My Street', !
 'city' => 'Lexington', !
 'state' => 'VA', !
 'zip' => '24450' !
} !
!
puts address['name'] !
puts address['street'] !
puts address['city'] + ', ' + address['state']
+ ' ' + address['zip'] !

Code Exercise 1
Write a program that converts seconds to
years. Test your program with 600000000
seconds, 60 seconds, and 40000.33 seconds.

An Approach
●  Figure out how many seconds in a year

o  60 seconds in a minute
o  60 minutes in an hour
o  24 hours in a day
o  365 days in a year (365.242 if you're really precise)

●  Do the math
●  Return a result

An Answer
sec = 600000000.0 !
!
puts sec/60/60/24/365 !

Resources
● Rubylearning.com
● Learn to Program (http://pine.fm/LearnToProgram/)
● Why's Poignant Guide to Ruby (http://

mislav.uniqpath.com/poignant-guide/)
● Ruby Documentation (http://ruby-doc.org/core/)
● "Pick-axe Book" (http://ruby-doc.org/docs/

ProgrammingRuby/)

