
Collections

Collections
Array:
> fruits = ["kiwi", "strawberry", "plum"] !
=> ["kiwi", "strawberry", "plum"] !
fruits[0] = "kiwi", fruits[1] = "strawberry", etc. !
!
Associative array ("hash"):
> states = {"VA" => "Virginia", "MD" =>
"Maryland"} !
=> {"VA" => "Virginia", "MD" => "Maryland"} !
!
states["VA"] = "Virginia", states["MD"] = "Maryland" !

Loops & Iterators: repeating yourself 	

> fruits[0] !
kiwi !
=>nil !
!
> puts fruits[1] !
strawberry !
=> nil !
!
> puts fruits[2] !
plum !
=> nil !

this isn't fun or efficient!

.each: Do something repeatedly	

> fruits.each do |fruit| !
> puts fruit !
> end !
kiwi !
strawberry !
plum !
=> ["kiwi", "strawberry", "plum"] !

Exercise
●  Create an array of four places you would

like to visit
●  Print out each of those places using a

loop

Example:
"I would like to visit Paris" !
"I would like to visit Barcelona" !
"I would like to visit Lima" !
"I would like to visit Havana" !

Conditional: do something if a condition is true	

> fruits.each do |fruit| !
> puts fruit if fruit == "plum" !
> end !
plum !
⇒ ["kiwi", "strawberry", "plum”!

Exercise
●  Create an array named hilt_class that

contains the name of the people next to
you. Be sure to include your own name.

●  Using your hilt_class array, create a
conditional that prints "My name is
(your name)" for your name only

.each: for hashes	

states = {"VA" => "Virginia", "MD" =>
"Maryland"} !
!
states.each do |code, state| !
 puts code.to_s + “is the code for " +
state.to_s !
end !

Power Tip:
There's a "short" code for placing variables within double-
quoted (") strings:

puts "#{code} is the code for #{state}" !

.times
counter = 0 !
!
10.times do !

#counter = counter + 1 !
#puts "I'm at number " + counter.to_s !

end !

Fun with Arrays
array.sort # sort the keys in an array
array.inspect # quickly show items in an array
array.length # returns the length (number of items)
array.empty? # is the array empty?
array.reverse # reverses the order of an array
array.uniq # prints unique values in an array

There are many more methods! See the
Array documentation.
	

Branching: Do something only under certain

circumstances	

if fruits[0] == "plum" !
 puts fruits[0] !
end !
Remember: = is assignment, == is equivalence

Ruby one-liner:
puts fruits[0]if fruits[0] == "plum" !

Branching: Do something only

under certain circumstances	

Use else and elsif for compound conditions.
Remember the "and" (&&) and "or" (||) operators?
!
if fruits[0] == "apple" !
 puts "Yum!" !
elsif fruits[0] == "cardboard" || fruits[0] == "sand" !
 puts "Yuck!" !
else !
 puts "Not bad." !
end !

Branching
puts "Yuck" unless fruits[0] == "apple" !
!
age = 5 !
case age !
when 0..2 !
 puts "baby" !
when 3..18 !
 puts "child" !
else !
 puts adult !
end !

while loop
continues while a condition is true
like an each loop with an if
!
counter = 0 !
!
while counter < 5 !

#puts counter !
#counter += 1 !

end

Remember: += is shorthand for counter = counter + 1 !

until loop
continues until a condition is met
like an each loop with an if
!
counter = 0 !
!
until counter == 5 !

#puts counter !
#counter = counter + 1 !

end !

Remember: = is assignment, == is equivalence

Splat Operator
numbers = (1..10).to_a !
letters = ('a'..'z') !
!
puts numbers.include?(5) !
puts numbers.min !
puts numbers.max !
 !
puts letters === 'c' !

Interpreter
●  Ruby is an interpreted language

o  Its code cannot be run directly
o  It must be run through a Ruby interpreter

●  Most common interpreter is Matz's Ruby
Interpreter (MRI)
o  There are others (jruby, rubinius, etc.)

●  There are different ways to run code
through a Ruby interpretor
o  Just used IRB
o  Now we'll use a file

Running code
●  Why use a file? What's different from irb?
●  Note: the directory your terminal is

currently in is your working directory

Code
Create a new file named my_program.rb in
your working directory with this code
!
class Sample!
 def hello!
 puts "Hello World!" !
 end!
end!
!
s = Sample.new !
s.hello !

!

Running Code
Run the save code in the terminal

$ ruby my_program.rb !
Hello World! !

Your Own Command
Line Program

Hello World
Create a file named hello.rb and add the
following code

puts "Hello, World!" !
!
Now run it
!
$ ruby hello.rb !

Arguments
Update hello.rb with the following

puts "Hello, #{ARGV.first}!" !

Now run it with the following

$ ruby hello.rb Wayne !
Hello, Wayne!

Conditionals
Refactor hello.rb!

if ARGV.empty? !
 puts "Hello, World!” !
else!
 puts "Hello, #{ARGV.first}!” !
end !

Now run it:
$ ruby hello.rb !
Hello, World! !
$ ruby hello.rb Wayne !
Hello, Wayne! !

Libraries
Useful behavior beyond the "basics"

●  Ruby Standard Library

o  Files (CSV, text, etc)
o  Advanced math (linear algebra, encryption)
o  Internet (http, ftp, mail, etc.)
o  Documentation (rdoc)

●  Ruby Gems
o  Just about everything else

Organization: code reuse	

●  Methods
o  Name code (like variables that name strings and

numbers)
o  Take arguments
o  "Mini-scripts" || "Tiny commands"
o  Allows for code reuse

!
def add(x, y) !
 puts x + y !
end !

Exercise 	

Create a collection of these authors and the year they kicked
the bucket; print the collection in the following format:

Charles Dickens kicked the bucket in 1870.

Charles	 Dickens,	 1870	
William	 Thackeray,	 1863	
Anthony	 Trollope,	 1882	
Gerard	 Manley	 Hopkins,	 1889	

An Answer	
authors = { !
 "Charles Dickens" => "1870", !
 "William Thackeray" => "1863", !
 "Anthony Trollope" => "1882", !
 "Gerard Manley Hopkins" => "1889" !
} !
!
authors.each do |author, year| !
 puts author.to_s + " kicked the bucket in " + year.to_s !
end !
!
Can you write this as a method?

Exercise
A time traveller has suddenly appeared in the classroom!

Create a variable representing the traveller's year of origin
(e.g., year = 2000) and greet our strange visitor with a
different message if he is from the distant past (before 1900),
the present era (1900-2020) or from the far future (beyond
2020).

An Answer	
year = 2000 !
!
if year < 1900 !
 puts "Tell me of the past!" !
elsif year >= 1900 && year <= 2020 !
 puts "I wish you were from a cooler era." !
else !
 puts "Hello, future traveller." !
end !
!
Rewrite (refactor) as a method to test
different years

An Answer: improved	
def greeting(year) !
 if year < 1900 !
 puts "Tell me of the past!" !
 elsif year >= 1900 && year <= 2020 !
 puts "I wish you were from a cooler era." !
 else !
 puts "Hello, future traveller." !
 end !
end !

greeting 1878
greeting 2013
greeting 3000

Exercise
Create a collection of 19th- and 20th-century authors (or historical/
political figures if that's your bag!) and their birth dates (historical
accuracy doesn't matter). An example:

birth_dates = {"Wallace Stevens" => 1879} !
!
Count the number of 19th-century birth dates and the number of
20th-century birth dates, then print the results like:

There are 3 19th-c. births and 2 20th-c. births in
my collection. !

An Answer
birth_dates = {'Wallace Stevens' => 1897, 'Wayne
Graham' => 1977} !
!

nineteenth_count = 0 !
twentieth_count = 0 !
!

birth_dates.each do |person, b_date| !
 if b_date < 1900 !
 nineteenth_count += 1 !
 else !
 twentieth_count += 1 !
 end !
end !
!

An Answer: continued	

puts "There are " + nineteenth_count.to_s +
" 19th-c. births and " +
twentieth_count.to_s + " 20th-c. births in
my collection." !

How might you expand this to capture additional centuries?
Decades?

Questions?

