What is 00P?

e Objects are complex entities (which we
sometimes call "data structures") with
gualities and abilities.

e|n an object-oriented programming
language, we work with complex objects
rather than simple "primitives" like
numbers and letters.



Object Orientation

e (Nearly) Everything is an Object

e Objects "communicate" by
sending and receiving
messages

e Objects have their own
memory

® Every ObJeCt IS an InStance Of d Object-oriented Programming

Cla SS Graphical User Interface
3D Graphics
ARPANET (what became the
Internet)

Alan Kay



(lasses and instances

Classes are archetypes

Instances are particular objects




(lass

Describes the generic characteristics of a
single type of an object

What things are of this type are
o Dog
o Vehicle
o Baby



(lasses and Instances

Classes Instances

e Template for an ® Discreet instantiation
object of a class

e Describes state ® Shares behavior with

Describes behavior
Used to create many
Instances

other instances



Object

Take this cat...

It has qualities (attributes)
white

long-haired

4 years old

And can do things (methods)
walk

eat

meow

nap




Methods

e Defines a behavioral characteristic
e What the things of the class's type do.

o Chase

o Drive
O TaIk

e The "verbs"



Methods

Defined within a class

Store instructions to execute on attributes
keywords def and end start and end a method
Every method evaluates to something

o return keyword not required

o last statement
use # at the beginning of a line to write a comment
(Ruby will ignore everything on the line after the #)
Exception?
"#{variable}"



Variable

e Defines attribute characteristics
e What things of the class’ type have

o Breed

o Model Year

o Favorite Ice Cream



Instance

e A specific incarnation of a class
o RinTin Tin
o garbage truck
o the neighbor's kid



(offee Class

class Coffee
end

c = Coffee.new
puts ¢

#<Coffee:0x007ffb1d0b6290>
=> nil



(offee Class

class Coffee
def initialize
puts "Coffee 1s created"
end
end

c = Coffee.new
Coffee 1s created
=> #<Coffee:0x007ffbld09bad8>



(offee Class

class Coffee
def initialize
@temperature = 0
@flavor = 'sweet, smoky, Sumatran’
end
end

myCoffee = Coffee.new

=> #<Coffee:0x007ffb1d025ch8
@temperature=0, @flavor="sweet, smoky,
Sumatran'>



Constructor Overloading

class Coffee
def initialize(temp = @, flavor = 'bland')
@temperature = temp
@flavor = flavor

end
end

waynes_coffee = Coffee.new(80, 'spicy')

=> #<Coffee:0x007ffblb8219c8 @temperature=80,
@flavor="spicy"'">

brandons_coffee = Coffee.new(90)

=> #<Coffee:0x007ffbld0f0030 @temperature=90,
@flavor="bland">



Variable Scope

local variable
temperature

instance variable
@temperature

class variable
@@temperature

global variable
$temperature

constant
TEMPERATURE



Manipulating Values

Use the "!" operator

def temp!(temp)
@temperature = temp
end

myCoffee.temp!(120)
puts myCoffee.temp

yourCoffee = Coffee.new
puts yourCoffee.temp



Existential Operator

def hot?(temp)
if temp > 160
return true
end

false
end



Method Chaining

Do a series of tasks in order (left-to-right)
task.try.tryAgain.success?

First, task.try executes, then result.tryAgain

task.try.tryAgain.success?
result.tryAgain.success?
result.success?



Inheritance

e A relation between two classes
o Cats are mammals, all mammals are animals

e Classes lower in the hierarchy 'inherit'

features

o If all mammals can breathe, then all cats can
breath

e Only one level of inheritance!!!

class < parent



Inheritance

class Drink class Coffee < Drink
def initialize def initialize
@container = 'can' @container = "'mug’
@material = 'aluminum' @material = 'ceramic'
end @flavor = 'sumatran'
end
def get_container
@container def get_flavor
end @flavor
end
def get_material
@material end
end
end

myCoffee = Coffee.new
puts "The #{myCoffee.get_material}
#{myCoffee.get_container} has #{myCoffee.get_flavor} coffee



Inheritance

myCoffee = Coffee.new
puts "The #{myCoffee.get_material}

#{myCoffee.get_container} has #{myCoffee.get_flavor} coffee
in it."



Modules

Group methods, classes, and constants
Namespace to prevent name clashes
Implement mixin facility

Declared with modu le keyword

module Hilt

end



Mixins

A trick to eliminate "multiple inheritance"
Example




Documentation

e Explain what the code is intended to do
e Reminders to yourself on what it does

e |f you can't explain it easily, rewrite the code



Development Cycle...

e Works: http://gist.github.com/649456
e Better: http://gist.github.com/649460
e Not Embarrasing: http://gist.github.com/649480

You can run the default documentor on the third one:

rdoc sound3.rb

http://people.virginia.edu/~wsg4w/rdoc/Virgo.htm|

another style:

http://people.virginia.edu/~wsg4w/yard/Virgo.html




Questions?



Afternoon (and beyond) Hacks

TryRuby

Personal Chef (start at 11. Objects,
Attributes, and Methods)
Encryptor Lab

Event Manager Lab

RSpec and BDD

EventReporter

RSpec

_earn Ruby the Hard Way

Ruby Koans




|'m Stuck

IRC (#hilt on freenode)
Ask someone around you
Google

Take a break

Raise your hand



