
What is OOP?
● Objects are complex entities (which we

sometimes call "data structures") with
qualities and abilities.
● In an object-oriented programming

language, we work with complex objects
rather than simple "primitives" like
numbers and letters.

Object Orientation
●  (Nearly) Everything is an Object
●  Objects "communicate" by

sending and receiving
messages

●  Objects have their own
memory

●  Every object is an instance of a
class

Alan Kay	

Object-oriented Programming	

Graphical User Interface	

3D Graphics	

ARPANET (what became the
Internet)	

Classes and instances

Classes are archetypes

Instances are particular objects

Class
Describes the generic characteristics of a

single type of an object

What things are of this type are
o  Dog

o  Vehicle

o  Baby

Classes and Instances
Classes
●  Template for an

object
●  Describes state
●  Describes behavior
●  Used to create many

instances

Instances
●  Discreet instantiation

of a class
●  Shares behavior with

other instances

Object
Take this cat…

It has qualities (attributes)
white
long-haired
4 years old

And can do things (methods)
walk
eat
meow
nap

Methods
●  Defines a behavioral characteristic

●  What the things of the class's type do.
o  Chase

o  Drive

o  Talk

●  The "verbs"

Methods
●  Defined within a class
●  Store instructions to execute on attributes
●  keywords def and end start and end a method
●  Every method evaluates to something

o  return keyword not required
o  last statement

use # at the beginning of a line to write a comment
(Ruby will ignore everything on the line after the #)
Exception?
"#{variable}" !

Variable
●  Defines attribute characteristics

●  What things of the class’ type have
o  Breed

o  Model Year

o  Favorite Ice Cream

Instance
●  A specific incarnation of a class

o  Rin Tin Tin

o  garbage truck

o  the neighbor's kid

Coffee Class
class Coffee !
!
end !
!
c = Coffee.new !
puts c !
!
#<Coffee:0x007ffb1d0b6290> !
 => nil !
!

Coffee Class
class Coffee !
 def initialize !
 puts "Coffee is created" !
 end !
end !
!
c = Coffee.new !
Coffee is created !
 => #<Coffee:0x007ffb1d09ba08> !
!

Coffee Class
class Coffee !
 def initialize !
 @temperature = 0 !
 @flavor = 'sweet, smoky, Sumatran’!
 end!
end !
!
myCoffee = Coffee.new !
=> #<Coffee:0x007ffb1d025cb8
@temperature=0, @flavor="sweet, smoky,
Sumatran"> !

Constructor Overloading
class Coffee!
 def initialize(temp = 0, flavor = 'bland') !
 @temperature = temp !
 @flavor = flavor !
 end !
end !
!

waynes_coffee = Coffee.new(80, 'spicy') !
 => #<Coffee:0x007ffb1b8219c8 @temperature=80,
@flavor="spicy"> !
brandons_coffee = Coffee.new(90) !
 => #<Coffee:0x007ffb1d0f0030 @temperature=90,
@flavor="bland"> !

Variable Scope
local variable
temperature

instance variable
@temperature !

class variable
@@temperature !

global variable
$temperature !

constant
TEMPERATURE !

Manipulating Values
Use the "!" operator
!
def temp!(temp) !

#@temperature = temp !
end !
!
myCoffee.temp!(120) !
puts myCoffee.temp !
!
yourCoffee = Coffee.new !
puts yourCoffee.temp !

Existential Operator
def hot?(temp) !
 if temp > 160 !
 return true !
 end!
!
 false !
end !

Method Chaining
Do a series of tasks in order (left-to-right)
task.try.tryAgain.success? !

First, task.try executes, then result.tryAgain !
!

task.try.tryAgain.success? !
result.tryAgain.success? !
result.success? !

Inheritance
●  A relation between two classes

o  Cats are mammals, all mammals are animals
●  Classes lower in the hierarchy 'inherit'

features
o  If all mammals can breathe, then all cats can

breath
●  Only one level of inheritance!!!

class < parent !

Inheritance
class Drink !
 !
 def initialize !
 @container = 'can' !
 @material = 'aluminum' !
 end !
 !
 def get_container !
 @container !
 end !
 !
 def get_material !
 @material !
 end !
 !
end !

class Coffee < Drink !
 !
 def initialize !
 @container = 'mug' !
 @material = 'ceramic' !
 @flavor = 'sumatran' !
 end !
 !
 def get_flavor !
 @flavor !
 end !
 !
end !

myCoffee = Coffee.new !
puts "The #{myCoffee.get_material}
#{myCoffee.get_container} has #{myCoffee.get_flavor} coffee
in it." !
!

Inheritance

myCoffee = Coffee.new !
puts "The #{myCoffee.get_material}
#{myCoffee.get_container} has #{myCoffee.get_flavor} coffee
in it." !
!

Modules
●  Group methods, classes, and constants
●  Namespace to prevent name clashes
●  Implement mixin facility
●  Declared with module keyword
!
module Hilt!
 ... !
end !

Mixins
A trick to eliminate "multiple inheritance"
Example

Documentation
● Explain what the code is intended to do

● Reminders to yourself on what it does

● If you can't explain it easily, rewrite the code

Development Cycle...
● Works: http://gist.github.com/649456
● Better: http://gist.github.com/649460
● Not Embarrasing: http://gist.github.com/649480

You can run the default documentor on the third one:

rdoc sound3.rb !

http://people.virginia.edu/~wsg4w/rdoc/Virgo.html

another style:

http://people.virginia.edu/~wsg4w/yard/Virgo.html

Questions?

Afternoon (and beyond) Hacks

●  TryRuby
●  Personal Chef (start at 11. Objects,

Attributes, and Methods)
●  Encryptor Lab
●  Event Manager Lab
●  RSpec and BDD
●  EventReporter
●  RSpec
●  Learn Ruby the Hard Way
●  Ruby Koans

I'm Stuck
●  IRC (#hilt on freenode)
●  Ask someone around you
●  Google
●  Take a break
●  Raise your hand

